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CHANNE LS DURING FLOW OF A RARE FIED GAS

WITH SLIPPAGE AND A PHASE TRANSITION AT
THE WALLS
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Functions for the determination of the pressure in narrow slots are obtained in the case of
three-dimensional flow with allowance for the effect of slippage. The effect of slippage on
the nature of the pressure distribution in the gap between round disks during the sublimation
of ice is demonstrated.

In some industrial vacuum equipment andevaporation—sublimation heat exchangers the process of
sublimation and flow of the sublimate vapor is accomplished in narrow slotted channels formed by the sub-
limating walls,

The modes of flow will vary depending on the height of the slot and the pressure of the vapor in it.
Not only can a viscous mode (Kn < 0.01) occur here but also a molecular-viscous mode (Kn > 0.01) and a
translational mode (0.1 < Kn < 1). Since the equations of motion and energy of the flow are strictly valid
only in the region of small enough Knudsen numbers, and the well-known attempts to transform them for a
description of the motion of rarefied gases are very cumbersome [1, 2], the ordinary Navier—Stokes equa-
tions were used in the present work with the insertion into the boundary conditions of additional terms tak-
ing into account the slippage and temperature jump at the boundary of the stream with the wall surface.
Allowance for the effect of slippage made it possible to cover the range of modes of practical interest.cor-
responding not only to small but also to medium Knudsen numbers (from 0.01 to 0.1).

Axially symmetrical flows of vapor during sublimation in a narrow gap between round disks, cor-
responding to the viscous mode with Kn < 0.01, were studied in [3]. Below we will examine the three-di-
mensional flows of a rarefied vapor in narrow slotted channels with a phase transition at the walls,

It is assumed that the slotted channel has a flat middle surface and its height 2h satisfies the condi-
tion |[Vh| « 1, where V =1i9/8x +j3/3y. The rectangular coordinates 0xy are introduced in the plane of
symmetry. The distance from this plane is measured by the coordinate z, Since the height of the slotted
channel in this case is small compared with the scale of the vapor flow in the 0Oxy plane (h « L), the equa-
tions of motion, continuity, and heat conduction can be represented in the following form (separating out
the transverse velocity component v = u + kw, as in the analysis of flow of an incompressible fluid in a gap
f4]):
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Fig. 1. Dependence of function ¥ on pressure P, N/m? (9)-(12) and
on disk radius r, mm (13).

Fig. 2. Variation in pressure P, N /m? over length of slot r, mm:
1) from [3]; 2) from Egs. (9)-(13).
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The conditions corresponding to allowance for slippage and a temperature jump must be satisfied at
the channel walls z = #h(x, y):

u = 2 _~Gl Ilili) = 3 v vT, (5)
G \ 02 Joey 4 oT
i / Y
T:Tw_§~2 “J_LKO_T) (6)
y+1 Pr\ 0z j.—

Let us consider the laminar flow of a vapor in a slotted channel corresponding to small Reynolds
numbers which characterize these flows and the flows of an incompressible fluid of the Hele—Shaw type.
E quations (4) and (6) only are used to estimate the degree of heterogeneity of the temperature field along
the height of the channel. For this purpose we introduce the dimensionless coordinates { =x /L, 9 =y/L,
and £ =z /hy, and the dimensionless velocities U =v/Uy and, W =w/V,, where hy =maxh(x, y). Neglect-
ing the dependence of the thermophysical parameters on the temperature and using some average values of
these parameters for the estimate, we obtain in place of Eq. (4)

FT o (e o 0T R |
Pe Byl + W ag)w o va T, (7)

7
>

where y¢y = Ly; the number Pe = RePr = cpph]2mv0 /(AL;) characterizes the ratio of the convective and con-
ductive components of heat exchange in the vapor flowing in the slotted channel if 1, is the linear scale cor-
responding to significant relative temperature changes in the Oxy plane, We will assume that L;/L = 0(1).

If h%n /L% < Re, assuming that Pr €1 for gases, we obtain the following estimate for the ratio of the
temperature drops ATy along the height of the slot to the temperature drops AT along the plane of sym-
metry: ATy : ATy /ATy, = 0(Pe) = 0(Re). Using the latter result and the condition (6) we can estimate the
size of the temperature jump (T-Ty) /ATy =0 (KnRe),

We will use the equation of state for an ideal gas
o = PI(RT). €

From (1)-(3) one can obtain an estimate for the ratio of the pressure drops along the height of the slot
and in the plane of symmetry: AP, /APy, = 0(h?/L?%, Thus, one can assume that the parameters p, T,
and P of the vapor are practically constant along the height of the slot and the sublimation at the walls pro-
ceeds in a quasi-equilibrium fashion, i.e., the pressure and temperature of the vapor in the slot can be re-
lated by the Clapeyron—Clausius equation:
A RT, /A

= Py, F(P) = — .
I =g T P = e PPy
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Since the ratio of the terms on the right side of Eq. (1) to the
terms on the left side has the order of magnitude of Re or h? /1.2,
they can be neglected in the linear approximation to which we are
limited here and the following expression can be written for the
distribution of the longitudinal velocity component of the vapor over
the height of the slot:

2—0o 1 P

— h? 3 p
e P (g2 b op o 3B op
¢ 2u(+ ok hz)v T Y

Since I =1, 26uvy/(pa) and o = VyYRT, we obtain

h T 3wl ' ¢ eW/RT 4 o* 4P

1 (- - m [1 L 2—0 378 9 w dlnF(P)]

' Fig. 3. Diagram of flat slot
with obstructions at outer
boundary.

We can find the pressure distribution in the gap between the
subliming surfaces from the equation of material balance

v (hoV) = T,

where Jy, is the intensity of sublimation, which can be given either as a function of the coordinates J,,(x, y)
which is proportional to the specific power of the heating elements, or as a function of the parameters of
state of the vapor flowing in the gap [3].

In addition, the pressure P of the vapof must be given in the sections of the contour limiting the
vegion of flow. In the sections corresponding to the construction elements blocking the slotted channel
the component of the velocity V normal to the contour is equal to zero.

If the height of the slot is constant, the latter equation can be represented in the form

P
3ud, : . :
vr—— Lo v @05 0), ©
P,
where
O =P 0,270 38 o 9w dinF(P) .
’ RT o hVRT 4 B dp

P—P 1 P Pr— P
= LI ; 10
Y=—pr 3 3, i (10)

2
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If [(RT4/A)In(P/P%| <1, then in the expansion
1 RT, . P
l/l"“RT* lﬂ——P_ =] — In— “e
A P, 2 A P,
one can be confined to the first few terms. Then
2-—¢ 3.78@( 1 RT, ( P P,

2 ¢ hVRT,| * A p, P .
1 (RT,V, mz_l';;ﬁmi_gﬁ)_...]. (12)

g8\ A P, - P P

Thus, if Jy, = I, (%, y), then in the present case the determination of the pressures in the slot comes
down to a search for the solution ¥ of the boundary problem for the Poisson E quation (9) inthe region bounded
by the contour I, which consists of the sections TiandT'r (j, k=1, 2,...). Inthe sections I‘3 the values
of the function corresponding to the given pressures Pj are known. In the sections 1"1'; the derivative in
the direction normal to the contour is 9¥/9n = 0.

As an example let us examine the flow of a vapor during sublimation in an open gap between round
disks of radius r,. The external pressure is assumed to equal P!, i.e., ¥ =¥ = ¥(P') whenr =r,. The
pressure distribution of the vapor when Jp; = const corresponds to the following function ¥,
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Fig. 4. Conformal mapping of region A;B;BhAy onto rectangle,

Fig. 5. Conformal mapping of rectangle (Fig. 4) onto upper hal{f-
plane,

V=P L _3%2_;1 (r,_'—; —r?), 13)

Experimental data obtained in [3] in a study of the flow of a vapor-sublimate in the gap between round
disks were used to estimate the effect of slippage at the walls of the channel. The initial data for the cal-
culation are: height of slot 2h = 2 mm, diameter of disks 2r, = 130 mm, intensity of sublimation Iy = 0.49
-10~¢ kg /m? - sec, pressure in chamber P =5.33 N/m?, fraction o of molecules reflected diffusely from
walls taken as 0.9, In this mode of flow Kn ~ (0.1.

The order of the calculations was as follows: 1) we choose a P, and a T, corresponding to it on the
saturation curve for water vapors over ice; 2) we set an arbitrary temperature T and determine the pres-
sure P from the Clapeyron—Clausius equation with a calculation which encompasses the assumed range of
variation in pressure over the length of the slot; 3) using Egs, (9)-(13) we construct graphs of ¥ = ¥(P)
and ¥ = ¥(r) (Fig. 1); 4) from the graphs of ¥ = ¥(P) and ¥ = ¥(r) we find P = P(r) (Fig. 2).

The data obtained in [3] without allowing for slippage at the walls of the slot are also presented in
Fig. 2 for comparison (curve 1), I is seen from the figure that ignoring the slippage effect in our case
leads to a pressure about 1.3 times higher at the center of the disks.

In the present work we neglect the resistance of the phase transition APph because, as a calculation
shows, the hydraulic resistance APy is much greater in the range of modes of flow under consideration.
For example, for ry = 65 mm, 2h =2 mm, g =1, and 0 =~ 1;

AP,

for Kn == 0.1 ~0.008,

for Kn==001 —FPph 003
AP,

In some sublimation heat-exchange equipment of the cassette type [5] the construction elements may
be located directly at the end face of the channels, blocking the space for the escape of vapor and exerting
a certain effect on the pressure distribution along the length of the slot. Therefore as an example let us
consider the sublimation in the gap between round disks (Fig. 3) closed along the arcs Di.Ey (k =1, 2,

., n) distributed uniformly along the circumference r =r,, with 2 radial distribution of intensities (J
= Jy(r)). It is assumed that at the inner edge (r = ry) the pressure is P = Py(¥(P;) = ¥'), and at the open
sections of the outer boundary (r = r,) the pressure is P = Py(¥(P,) = ¥"),

The function ¥ is sought in the form of the sum ¥, + ¥, where

r s

Be
hd

£ Ty

\ [ \ Jm (ro) rodr()} d" 4 (14)
. r

\I'ru == Y

while the harmonic function ¥, because of the symmetry of flow is determined in the region A;B;BLA,,, at
the boundary of which it satisfies the conditions
Y. =0 a B B; V,=9"—VY¥, (o) at DDy,
OW¥,/0r =0 at D;A, and D,A,; ' (15)

OV, i8¢ =- 0 at ABy and 4,B,.
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The function z =—iln(R/ry) = ¢ + iln(r,/r) conformally maps this region onto a rectangle (Fig. 4 ;
Re = rel®)which is conformally mapped onto an upper half-plane (Fig. 5) by the function

w

e S‘ dw
) Vo)

The coefficients k and ¢ are determined from the equations (Figs. 4 and 5)

1

' ' du ’
“= 2 | T K@ =
1/% d -
- “ —cK(#)=1n 2
ﬁ clj Ve Du—m e =i

where K(k) and K(k') are complete elliptical integrals; k' =V1—k?. Consequently, ¢ = 7 /mKk)]. The
parameter k can be found, knowing » = K(k')/K(k) = (n/mln(r,/r;), from a table of k? = f(q) [6], where
g=e"™ = (r;/r)"

The search for ¥ comes down to the solution of the Keldysh —Sedov problem through the introduction
of the analytical functions f = ¥, +i¥; and f; =df/dw = ¢ +i¥ [7]. Since ¢ =o¥ p/ou, ¥ =_9¥./3v,
in place of (15) one can write ¢ =0 on GBp, DpDy, and ByG and ¥ =0 on B;,D,, and D;B;.

Thus,

Yo+ V1% 1y 1
fi= e, @ =Y, = S [(1——)K(k),k ,
Ty (@ — @ — ) o1 J

Q‘
=
=

(16)

¥, = Real f = Real V fi@ dew -+ — %, (r,).

Because of the symmetry of ¥,. relative to the Ov axis y, = 0. The coefficient v, is determined from
the condition

b

)

udu ayd 2 g
Y.(B)— ¥, (D)=Y (ry) -V =19, 5 V= = 21 , Le., y1= “?t— ¥ — ¥, ("]

Consequently,

f=[11‘-//___11)‘0(r2)] (/ 1-- _iL]n Vaz——wz ~—Vb2-——w2 >'

a—b
When P, = P, the points corresponding to the maximum pressure of the vapor will lie at the openings AyBy
(@<1<u<bhb), Along such an opening the function ¥ is determined by the equation

u? — a?
¥ =¥, Ir @]+ ¥ — ¥, (rzn( 1 -—arctg [/ )
The radius corresponding to the point (u, 0) is equal to

nK(k) (.Vl;:'— : k)]

Here F(w, k) is an elliptical integral of the first kind.

r = ryexp [

The flow rate of the vapor through the open part of the contour r = r, is determined by the expression

2nh3 oY 2 " u
i Pl S \F Sl Im = ‘P — ‘P‘ r, *
- S X =t U VA
Thus,
oanhd ., - 1 k
Q= (9" — W, (r,)] oo
3mp 1 —ak
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NOTATION

is the sublimation intensity;

are the height and length of slot;

are the temperature, pressure, density, and coefficient of dynamic viscosity of vapor
in slot;

are the temperature and pressure of vapor on saturation line;

is the latent heat of sublimation;

is the gas constant;

are the coefficients of thermal conduction and accommeodation;

is the fraction of molecules diffusely reflected from wall;

is the free path length of molecules;

is the transverse component of velocity of vapor perpendicular to middle surface;
is the longitudinal component of velocity of vapors;

is the velocity of vapor;

is the Knudsen number;

is the Reynolds number;

is the speed of sound;

is the characteristic scale in plane of slot;

is the condensation coefficient,
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